111 research outputs found

    Multi-microphone adaptive noise reduction strategies for coordinated stimulation in bilateral cochlear implant devices

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1121/1.3372727.Bilateral cochlear implant (BI-CI) recipients achieve high word recognition scores in quiet listening conditions. Still, there is a substantial drop in speech recognition performance when there is reverberation and more than one interferers. BI-CI users utilize information from just two directional microphones placed on opposite sides of the head in a so-called independent stimulation mode. To enhance the ability of BI-CI users to communicate in noise, the use of two computationally inexpensive multi-microphone adaptive noise reduction strategies exploiting information simultaneously collected by the microphones associated with two behind-the-ear (BTE) processors (one per ear) is proposed. To this end, as many as four microphones are employed (two omni-directional and two directional) in each of the two BTE processors (one per ear). In the proposed two-microphone binaural strategies, all four microphones (two behind each ear) are being used in a coordinated stimulation mode. The hypothesis is that such strategies combine spatial information from all microphones to form a better representation of the target than that made available with only a single input. Speech intelligibility is assessed in BI-CI listeners using IEEE sentences corrupted by up to three steady speech-shaped noise sources. Results indicate that multi-microphone strategies improve speech understanding in single- and multi-noise source scenarios

    Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1121/1.2839887.Bilateral cochlear implants seek to restore the advantages of binaural hearing by improving access to binaural cues. Bilateral implant users are currently fitted with two processors, one in each ear, operating independent of one another. In this work, a different approach to bilateral processing is explored based on blind source separation (BSS) by utilizing two implants driven by a single processor. Sentences corrupted by interfering speech or speech-shaped noise are presented to bilateral cochlear implant users at 0dB signal-to-noise ratio in order to evaluate the performance of the proposed BSS method. Subjects are tested in both anechoic and reverberant settings, wherein the target and masker signals are spatially separated. Results indicate substantial improvements in performance in both anechoic and reverberant settings over the subjects’ daily strategies for both masker conditions and at various locations of the masker. It is speculated that such improvements are due to the fact that the proposed BSS algorithm capitalizes on the variations of interaural level differences and interaural time delays present in the mixtures of the signals received by the two microphones, and exploits that information to spatially separate the target from the masker signals

    A channel-selection criterion for suppressing reverberation in cochlear implants

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1121/1.3559683.Little is known about the extent to which reverberation affects speech intelligibility by cochlear implant (CI) listeners. Experiment 1 assessed CI users’ performance using Institute of Electrical and Electronics Engineers (IEEE) sentences corrupted with varying degrees of reverberation. Reverberation times of 0.30, 0.60, 0.80, and 1.0 s were used. Results indicated that for all subjects tested, speech intelligibility decreased exponentially with an increase in reverberation time. A decaying-exponential model provided an excellent fit to the data. Experiment 2 evaluated (offline) a speech coding strategy for reverberation suppression using a channel-selection criterion based on the signal-to-reverberant ratio (SRR) of individual frequency channels. The SRR reflects implicitly the ratio of the energies of the signal originating from the early (and direct) reflections and the signal originating from the late reflections. Channels with SRR larger than a preset threshold were selected, while channels with SRR smaller than the threshold were zeroed out. Results in a highly reverberant scenario indicated that the proposed strategy led to substantial gains (over 60 percentage points) in speech intelligibility over the subjects’ daily strategy. Further analysis indicated that the proposed channel-selection criterion reduces the temporal envelope smearing effects introduced by reverberation and also diminishes the self-masking effects responsible for flattened formants

    The impact of reverberant self-masking and overlap-masking effects on speech intelligibility by cochlear implant listeners (L)

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1121/1.3614539.The purpose of this study is to determine the relative impact of reverberant self-masking and overlap-masking effects on speech intelligibility by cochlear implant listeners. Sentences were presented in two conditions wherein reverberant consonant segments were replaced with clean consonants, and in another condition wherein reverberant vowel segments were replaced with clean vowels. The underlying assumption is that self-masking effects would dominate in the first condition, whereas overlap-masking effects would dominate in the second condition. Results indicated that the degradation of speech intelligibility in reverberant conditions is caused primarily by self-masking effects that give rise to flattened formant transitions

    Evaluation of the Importance of Time-Frequency Contributions to Speech Intelligibility in Noise

    Get PDF
    Recent studies on binary masking techniques make the assumption that each time-frequency (T-F) unit contributes an equal amount to the overall intelligibility of speech. The present study demonstrated that the importance of each T-F unit to speech intelligibility varies in accordance with speech content. Specifically, T-F units are categorized into two classes, speech-present T-F units and speech-absent T-F units. Results indicate that the importance of each speech-present T-F unit to speech intelligibility is highly related to the loudness of its target component, while the importance of each speech-absent T-F unit varies according to the loudness of its masker component. Two types of mask errors are also considered, which include miss and false alarm errors. Consistent with previous work, false alarm errors are shown to be more harmful to speech intelligibility than miss errors when the mixture signal-to-noise ratio (SNR) is below 0 dB. However, the relative importance between the two types of error is conditioned on the SNR level of the input speech signal. Based on these observations, a mask-based objective measure, the loudness weighted hit-false, is proposed for predicting speech intelligibility. The proposed objective measure shows significantly higher correlation with intelligibility compared to two existing mask-based objective measures
    • …
    corecore